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Abstract-A multilayered velocity profile has been assumed to exist for ‘drag reducing’ fluids Bowing in a 
pipe. The profile is characterized by a logarithmic portion ollset by an increment Au+ from that pertaining to 
a Newtonian fluid. For a given fluid Au+ is assumed to be determined by the shear velocity u,. On this basis a 
method is proposed by which one may predict the effect of changes in diameter on the friction and heat 

transfer coefficients. 

NOMENCLATURE 

intersection point of viscous and asymp- 
totic layers (Fig. 3); 
intersection point of asymptotic and logar- 
ithmic layers (Fig. 3); 
concentration of solution [ppm] ; 
friction coefficient, z,/[(p4)/2] ; 
heat transfer coefficient, 

qwl[i-‘C,u,(T, - TnJl ; 
specific heat [J kg-’ K-l] ; 
pipe diameter [m] ; 
thermal conductivity [W m-l K-r]; 
parameter characterizing the nature of the 
solution; 
Prandtl number evaluated at T,, (pC,)/k; 
‘turbulent’ Prandtl number, 

(1) + c&a + sn); 
heat flux [W m-‘1; 
heat flux at wall [W mm2]; 
pipe radius [m] ; 
dimensionless radius, (Ru,)/v; 
Reynolds number, (u,D)/v; 
temperature [K] ; 
dimensionless temperature, (TpC,u,)/q,; 
average temperature in pipe [K] ; 
wall temperature [K]; 
dimensionless average temperature, 

(T,~C,uJlq, ; 
dimensionless wall temperature, 

t T*f)C~~~)/~~ ; 
velocity (average of turbulent fluctuations) 

C m s-r]; 
dimensionless velocity, u/u,; 
average velocity in pipe [m s- ‘I; 
dimensionless average velocity, u,,,/u,; 
friction velocity, (T,/Q)‘,~ [m s- ‘1; 
coordinate distance normal to wall [m] ; 
dimensionless distance from the wall, 

(Y&)/v; 
coordinate of point B (Fig. 3) [m] ; 
dimensionless coordinate of point B, 

(Y&&)/v; 

Y In, distance from wall at which u = u, and T 

= T, [ml; 
+ 

Yltl, dimensionless Y,,,, ( ymu,).!v. 

Greek symbols 
thermal diffusivity, ~/(~C~) [m2 s- ‘3 ; 
total turbulent heat diffusivity, 61 + i:n 
[m” s-l]; 
shift of logarithmic layer, equation (10); 
turbulent heat exchange coefficient 
Cm2 s-l]; 
turbulent momentum exchange coefficient 
[m” s- ‘1; 
dynamic viscosity [kg m- 1 s- ‘1; 
kinematic viscosity, ,u/p [m’ s- ‘1; 
kinematic viscosity of water [m2 s- ‘I; 
total turbulent momentum diffusivity, 
v + CM [m2 s-r]; 
density [kg m-3]; 
shear stress [N m-*1 ; 
wall shear stress [N mi2]; 
wall shear stress at onset of drag reduction 
[N m-‘I. 

IN THE last decade considerable attention has been 
paid to the field of non-Newtonian fluids in general 
and in particular to a special category of these fluids, 
the dilute polymer solutions of the drag-reducing type. 
These fluids are of great interest in many applications 
as they frequently lead to striking reductions in friction 
and heat transfer as well as in mass transfer. 

These characteristics may be of importance in a 
number of applications including for example pipe-line 
transport, drag reduction for ships and submarines, 
firefighting, oil we11 drilling, and irrigation. Less fre- 
quently mentioned but perhaps even more important 
are industrial processes treating fluids which naturally 
exhibit strong non-Newtonian behavior such as fibers 
suspensions, pastes and gums. Such substances may 
well have to be processed in the preparation of foods or 
the manufacture of certain chemical products. 
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The complete and detailed description of the m- 
teraction of the molecules or fibers with the flow is, of 

course, most complex and even a complete formal 
solution may not always be directly suitable for 

engineering use, because it may require detailed infor- 
mation on the behavior of the molecules, information 
which in practice may not really be available. 

These considerations have led us to limit our goal to 

developing a method by which heat transfer and 
friction coefficients may be predicted for pipes of any 

size, on the basis of test data obtained in a single pipe. 
This approach is to some extent equivalent to the 
common practice of presenting friction and heat 
transfer coefficients for smooth tubes in terms of Re 

and Pr. The data for these presentations are also 
obtainable from tests in a single pipe, which, of course, 
reduces the required experimental work tremendously. 
Nevertheless, the proposed approach will still be 

applicable only for a given solution, that is a solution 
characterized by such factors as the type of polymer, 

concentration, and the state of degradation. 

2. SUMMARY OF PREVlOllS WORK 

Polymer solutions of the drag-reducing type have 
been studied intensively, and are covered by an 
extensive literature. For a basic approach of the 

problem, we refer the reader to the reviews [l, 21 for 
friction and heat transfer [3, 41. 

The drag-reduction phenomena can be described 

briefly as follows. The Newtonian fluids can be 
adequately represented by the well-known universal 

laws 

c, = ‘6 
Re 

(1) 

for laminar flow [curve (I), Fig. l] and 

c, 1 2 = 4.0 log,, (Re C; 2, - 0.4 (2) 

for turbulent flow [curve (2), Fig. 11. 
This is not the case for viscoelastic drag-reducing 

fluids however. In fact the typical friction curve for the 
latter will be located in a domain bounded by the 

FIG. 1. Typical friction laws: friction coefficient (C,) vs 
Reynolds number (Re). Curve (1): laminar flow; (2): New- 
tonian turbulent flow; (3): Virk’s maximum drag reduction 

asymptote; (4): typical drag reducing fluid. 

Newtonian friction law on the upper side and by the 
so-called ‘maximum drag-reduction asymptote’ on the 
lower side [Virk’s asymptote, curve (3), Fig. I]. Note 
that in Fig. 1 as well as in the subsequent development. 
we have used a simplified Reynolds number as defined 
for Newtonian fluids. The extension to a Reynolds 
number corrected on the basis of a ‘power law’ [5. 61 

should present little difficulty as the method remains 

unchanged in that case. Also. the correction will most 
probably be small for the dilute solutions of polymers 
in a Newtonian solvent generally used for drag- 
reduction purposes. The experimental asymptote has 
been found to be remarkably insensitive to polymer 
nature, concentration and solvent, constituting a seem- 

ingly ‘absolute’ limitation to the decrease in friction 
made possible by the presence of a drag-reducing 

agent. Virk’s equation [2] for the asymptote is 

C; ’ 2 = 19.0 log,, (Re C; 2, - 32.4. (3) 

The actual position of the friction curve between those 
limits is unknown a priori and will depend on all the 

factors previously mentioned. An example of such a 
curve is shown in Fig. 1 and designated by curve (4). 

In particular, it has been often noted that there is a 

rather strong influence of the diameter of the pipe on 
the friction law, all other factors being constant, as 
clearly illustrated in Fig. 2 based on ref. [7] whose data 
we will subsequently use for comparison with the 
values predicted from our approach. 

The problem of the diameter effect is of particular 
importance as it would be most valuable to predict the 

friction (and heat transfer) in large scale pipes (which 
may be required in actual industrial applications) from 
data obtained with relatively small sizes in the labo- 

ratory. Accompanying the reduction in friction, a 

corresponding decrease in heat transfer takes place. 
The two phenomena cannot however be directly 

related by a simple law. The C,, vs Rr curves will have 
for upper bound the Newtonian relationship described 

by the traditional Colburn analogy 

C,,fr2 ’ = C‘,.,‘2 (4) 

FIG. 2. The effect of diameter on friction for drag reducing 
fluids: friction coefficient (C,) vs Reynolds number (Re). 
Solution: 5OOppm guar gum in water [7]. Curve (1): 4.1 mm 
dia. pipe: (2): 1Omm; (3): 52.5mm; (4): 104.7mm: (5): 

208 mm. 
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and for lower bound the minimum heat transfer 
asymptote, an expression for which has been proposed 

as [41 
C,Pr2’3 = 0.03 Re,0.45 (9 

where Re, is a Reynolds number based on the apparent 
viscosity at the wall. 

It is significant that the data and studies of heat 
transfer are much scarcer than the corresponding 
friction data for this kind of fluids. From those 
available, it is important to note, as has been suggested 
for fiber suspensions as well as for polymer solutions 

[4] that the often assumed Reynolds analogy (cM = E”) 

is most probably not applicable in general for any 
viscoelastic drag-reducing solutions. Furthermore, 
when taking or evaluating the experimental data, one 
has to take into account radical departures from 
Newtonian behaviour such as greatly lengthened 
entrance regions [4] and the anomalous readings by 
classical instruments (e.g. hot wire, pitot tubes). The 
study of heat transfer data, however, is often doubly 
rewarding as it may not only be helpful in providing 
information for design purposes, but it may also lead 
to a better understanding of the turbulent transport 
mechanism for heat and momentum transfer. 

Various models have been proposed for the repre- 
sentation of the velocity profile in terms of the non- 

dimensional quantities IL+ and y+ as used in the 
classical turbulent universal profile. These models are 

related to expressions that have been designed in the 
case of Newtonian fluids to represent the smooth 
transition between the laminar sublayer 

u+ = JJf, (6) 

the logarithmic profile [9] 

u+ = 2SIny’ + 5.5 (7) 

and the outer wake defect law [lo]. A good example is 

Clll 

y+ = [(+ + ,-5.5h- 

r 

.$u+ _ 1 _ Ku+ 

L 

wu+Y (KU+13 @) 

with K = 0.4. 2 6 

3. THE DIAMETER EFFECT ON THE FRICTION 
COEFFICIENT 

3.1. The velocity prqfile 
In the present proposed approach, we will, for the 

sake of simplicity, use Virk’s 3-layers model [2] which 
consists of the classical viscous sublayer [equation (6), 

layer 1 in Fig. 31, an ‘ultimate’ (or ‘asymptotic’) profile 

U+ = 11.71ny+ - 17.0 (9) 

(layer 2, Fig. 3) and a logarithmic layer 

U+ = 2.5 In y’ + 5.5 + Au+ (10) 

(layer 3, Fig. 3). The logarithmic portion will be 
parallel to the Newtonian one (layer 4, Fig. 3) but 

FE. 3. Virk’s velocity profile model: Dimensionless law of 
the wall velocity (u+ = u/u,) vs dimensionless distance from 
the wall (y’ = (yu,)/v). Curve (1): viscous sublayer ; (2): 
Virk’s elastic sublayer (3): logarithmic layer; (4) : Newtonian 

logarithmic layer. 

displaced by an amount Au+ which is assumed to be a 

function of the nature of the polymer solution, its 
concentration, state of degradation, flow conditions 

etc. Some authors have proposed that the logarithmic 
portions of the velocity profiles are not exactly parallel 

to each other and certain corrections have been 
suggested [ 121. These are generally small, however, 

and we will neglect them in this first approach. We will 
also neglect the outer wake layer as is often done for 

pipe flow without adverse pressure gradient, and 
simply suppose that the logarithmic layer extends to 
the center of the pipe. We will assume that those 
conditions exist for the flow of our solutions and re- 

examine this point as we continue with the 
development. 

The limits of the different layers are then : the triple 
intersection between the viscous laminar sublayer, the 

asymptotic profile and the Newtonian logarithmic 
profile (point A in Fig. 3), and the intersection of the 
ultimate profile with that of the central core (point B). 

The triple intersection (point A) is approximated by y+ 
= 12, and point B is a function of the displacement 
Au+ of the logarithmic portion of the velocity profile 

with respect to the Newtonian one. This intersection is 

determined by 

(11) 

We will hereafter consider the increment AU+ as a 
typical number characterizing the degree, or in a sense 
the effectiveness, of the drag reduction. Indeed, if AU+ 
= 0, the profile collapses to the classical Newtonian 

one and if Au+ is such that yi > R’, (R+, non- 
dimensionalized radius), the profile will consist only of 

the laminar sublayer and the asymptotic interactive 
layer. In that case, one would expect to obtain the case 
defined by Virk’s asymptote. 

The parameters governing Au+ may be derived by 
following general dimensional analysis and the con- 
cepts of the law of the wall. The quantity Au+ should 
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then depend on the type and condition of the polymer 
described by P and the concentration C. Appropriate 
forms of this parameter P could be (uf-)/r or iljrii* 
where L is a characteristic length of the polymer and T 

a characteristic time. Many studies have been dedi- 

cated to finding expressions for L or T in terms of 
classical rheological parameters for the polymer so- 
lution such as molecular weight, number ofchain links 
in the macromolecules, intrinsic viscosity, radius of 

gyration or relaxation times. For the purpose of the 
present study as outlined in the introduction, however, 
L or T may be regarded as fixed quantities for any 

particular solution. As a consequence Au+ becomes a 
function of I(, only. 

Making use of the velocity profiles as illustrated in 
Fig. 3, it is now possible to integrate numerically these 

profiles to find a relationship between C,, Re and Au’. 
Comparing these calculated values of C, and Re to 

the corresponding measured values, the appropriate 
Au+ can be determined. Since for a given pipe C, and 
Re also fix the value of a,, a relation between LI, and 

Au+ is established. Through repeated tests in the same 
pipe, the desired range of Au+ vs u, may be established 

for each solution. Thus a curve of Au+ vs u, may be 
prepared which may be regarded as a basic character- 

istic of the particular solution. 

3.2. ~u~er~~~l ~~te~ru~~o~ of the r!elocity prqfiles 

The steps outlined in Section 3.1 will now be 

described in some more detail. 
Integrating the velocity from the wall (J’ = 0) to the 

centerline (,r = D/2), we define an average velocity 

and, using the usual relations 

u; = (2/C,)’ *. 

U, = (v;D) Re (C,IZ)’ 

with 

Re = (pu,,,D)jp 

we find 

r8 wz ['K' 

(13) 

2 (14) 

(15) 

l-2 
“r=21z;rz Jo (R+-_r+)lr+d,Yj (16) 

and 

(R+ - y+)u?‘d:+, (17) 

equations which give us C, and Re in terms of u, and 
AU+. The value of AU* appears through the logarith- 
mic velocity profile expression and in the determi- 
nation of the intersection of the asymptotic and 
logarithmic layers. 

Carrying out the computations as indicated by 
equations (16) and (17) we obtain a series of curves for 
C, vs Re, each curve corresponding to a different value 
of Au+. The results are shown in Fig. 4. These curves 

represent the relationship between f’,, Re and AU’ 
which was mentioned in Section 3.1, and which for 
convenience we might call the ‘general C, CRY Au *’ 
curve. 

Any point on these curves is representing, for that 
particular ‘effectiveness of drag reduction’ (i.e. given 
Au+), a certain wall shear stress for a known diameter 
and viscosity. as 

T,,, = y[(v/D) Re(C,./2)’ ‘1’. (18) 

We have represented only the turbulent flow region 
since, for the type of fluids under consideration, drag 

reduction is known to be relevant only to that case. 
It is interesting to note the very smooth tangential 

blending of the constant Au* curves with the max- 
imum drag reduction asymptote. This corresponds to 
the transition from the asymptotic to the logarithmic 
layer of the velocity profile. 

It is also apparent that, unless U, and Au* are such 
that R+ < yi (i.e. the flow is still in the region of the 
drag reduction asymptote), the logarithmic part of the 

profile very soon exerts a major influence on the Re-C, 

curves, as the parallelism to the Newtonian law seems 
to imply. 

It is important to recall that for different diameters, 

the same value of u, will occur at different positions on 
the curve for a constant Au+. thus determining dif- 
ferent pairs of the values CppRe. Indeed, we know that 
for the same Re, a given solution in different diameters 

of pipe will show different values of C, (the so-called 

‘diameter effect’). 
As mentioned before, it is believed that for a given 

solution there is a unique relationship between U, and 
Auf. The value of U, will then be sufficient to describe 

the velocity in the region close to the wall, which is the 
one probably most responsible for the phenomena 
considered here. A similar proposition has been well 

Re 

FIN. 4. General C,-Rr-Au+ graph (turbulent Bow): Friction 
coefficient (C,)vs Reynolds number (Re) for various values of 
Au’, (shift from Newtonian logarithmic velocity profile). 
Curve (I): Newtonian turbulent friction Law; Curve (2): 

Virk’s asymptote for maximum drag reduction. 
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demonstrated by the success of the classical New- 

tonian universal velocity profile (‘law of the wall’). 
Thus, if the assumption that the wall region effects are 

predominant is correct, u, should be adequate to 
describe the whole flow and Au+ should be only 

weakly dependent on the diameter. Indeed, this has 
been indicated experimentally. 

It is now possible therefore, after experimental 
measurements of the C, vs Re law in a single pipe for a 
particular solution, to plot these results on our general 

C,-Re-Au+ graph and to associate a value of Au+ with 
every combination of C,-Re, that is for every u, 

[equation (14)]. That one-to-one relationship between 
Au+ and u, may in fact be regarded as a principal 

characteristic of a given polymer solution, as pointed 

out earlier. 

3.3. Prediction of the friction coejicients for different 
diameters 

The next step now is to apply the previous com- 
putation so as to be able to predict for a given solution 
the drag reduction in a pipe of any diameter from data 
taken in a single pipe (usually a size conveniently 

handled in the laboratory). It is important to repeat at 
this point that we are assuming that the solution to be 
considered in a pipe of arbitrary size will in all respects 

be the same as that in the test pipe. 
Measurement in a test pipe of a given diameter will, 

by the procedure explained in the previous section, give 
us the relation between Au+ and u, for that particular 
solution. 

The basic assumption we will use is that, as has been 
suggested before, this relationship Au+%, is fairly 

independent of the diameter of the pipe for a given 

solution. Experiments have shown that this pro- 
position is acceptable [13]. This assumption, as well as 

other types of correlations [14-161 have been used, 
and studies have been conducted [17-201 in an 

attempt to isolate and understand the nature of the 
diameter effect. 

Using the ‘general C,-Re-Au+’ graph (Fig. 4) 
together with the appropriate relationship between u, 
and Au+ which is applicable to the solution in 
question, it is now possible to predict the friction 
coefficient for the flow in a pipe of any desired 

diameter. 
The computations can be summarized as follows: 

Select an arbitrary C, corresponding to the Re 

desired for the pipe under consideration. 
Compute the associated u, [equation (14)]. 
Evaluate Au+ from the experimental graph Au’%,. 

For the same Re. locate the pair of values C,-Re 
specified by the value of Au+ on the ‘general 
C,-ReeAu+’ graph (Fig. 4). 
Find the corresponding value of Cr. This is a new 
estimate for Cr. 
Compute a new u,, etc., until the values of C, 
converge to the one which then becomes our 
prediction for the new pipe at the specified Re. 

The same procedure for different Re will give us a 

complete relationship between C, and Re for that 

given pipe. Note that the process usually converges 
rapidly and 2 or 3 iterations are generally enough for 
each point. 

4. THE ‘DIAMETER EFFECT’ ON THE HEAT TRANSFER 

COEFFICIENT 

4.1. Basic relationships 
The usual turbulent relations for shear flow may be 

expressed as 

(19) 

and 

q/(&J = - + + i:H $. [ I, 
(20) 

P 

Now, with 

and 

7-+ = ~I[avlw,~,)l (21) 

Y, = v + i&, (22) 

V + i:M 
Pr, = ~ 

c( + I:” ’ 
(23) 

k 
c[=-, 

PC* 
(24) 

if we assume fully developed Prow, no viscous dissi- 

pation, no axial conduction and similar variations of 

rJr, and q/q,, we find 

dT+ du+ 
-=_Rr_ 
dy + ‘dy+ 

(25) 

We can then integrate from y+ = 0 to y+ = yi 

where yz is the position of the average velocity uz and 
is also assumed to be corresponding to the average 
temperature Tz (this should not introduce a large 
error for smooth tubes). 

Let 

c, = - qw 
~C,umVm - T,) 

Then [21] 

T; - T; = - (C,/2)’ ’ (l/C,). (27) 

Also, with 

u; = (28) 

we finally find that the combination of terms which is 
sometimes called the Dipprey number is given by 

[(0.5C,/C,) - l](Cr/2)- ’ * = [r(Pr, - I)($Jdy’ 

(29) 



Note that we did not need to make any assumption 
regarding the value of Pr, and that the Reynolds 
analogy, in particular, did not have to be introduced. 

Supposing again, as mentioned earlier in Section 3.1. 
that the polymer solution can be described by the 
parameters C and P, for a given solution the pheno- 

mena will be characterized by u, only. We can write 

then 

du’ 
-+ =.f,(C. P, I’+) =.f; (u,, J+). 
dJ< 

(30) 

Assuming also as before a unique relationship between 
Au+ and u, for each solution, it follows that 

_r; =.f;(Au +, u,) = .l‘; (u,). (31) 

For heat transfer, the Prandtl number of the solution 

will also have to be included as a parameter. The way in 
which P has been defined, the possibility that it 

depends on temperature must be considered too. A 
given temperature, however, will fix the value of Pr and 

the dependence on temperature of P. so that for a 
particular solution and temperature, we have 

Pr, =&(Pr. C, P. y*) =f‘; (u,, ,v+). (32) 

Finally, after integration with respect to r ’ in equation 

(29), we find 

[(0.5C,!C”) - l](C,D)’ 2 = F(u,). (33) 

We can thus with the experimental data for C,,-Re 
and C,-Re in a single pipe, compute the previous 

function [equation (33)] which is a characterization of 
the combined heat transfer and friction reduction 
induced by that particular solution. 

The procedure of predicting heat transfer coef- 

ficients for pipes of different diameters may now be 

summarized. 

IO 
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I ) 52 5 m,m (MEASURED) 

(21 208 mm (WEASURED) I 

(31 208 mm IPREDICTED) I 
/ 

FIG. 5. Prediction of the diameter effect on friction : Friction 
coefficient (C,) vs Reynolds number (Re). Solution : 500 ppm 
guar gum in water [7]. Curve (1): experimental data for 
52.5 mm pipe ; Curve (2) : experimental data for 208 mm pipe ; 
Curve (3): prediction for 208 mm pipe on basis of 52.5 mm 

data. 

After obtaining friction and heat transfer data 
experimentally in a single test pipe, we can predict the 
C,-Rr law for another diameter by first computing the 
Au+ u, function as explained in Section 3. 

We next also compute 

[(C,.2C,,) - l]/(C,.:2) z = F(tc,) (34) 

from those data, where F(u,) is a function of ui only and 

is not directly dependent on the diameter. For a 

desired Re and the predicted C, , we can compute u: 
[equation (14)]. With these values of u, and C,., C,, is 

obtained from the previously found relation [equation 
(34)], which will usually be given in graphical or 
numerical form. 

5. EXAMPLES 

5.1. Prrdictiorl of the fiicrior~ co~$c’ier~ t 
Let us try to predict friction coefficients for a pipe of 

208 mm dia from the experimental data for a 52.5 mm 
one, for a guar gum solution of 500 ppm in water. The 
experimental data are taken from ref. [7]. In Fig. 5 we 

have plotted the experimental data for the 52.5mm 
pipe on the general ‘C,--Re-Au” graph, the curve 
is designated (1). From the intersection of the experi- 
mental curve with the constant Au+ curves, we can 

compute the relation Au’ vs u, (Fig. 6). In so doing we 
have used the expression 

(where C, is the concentration in ppm) for the 
viscosity. 

This curve of Au+ vs u, is considered to be a unique 
characteristic of this solution. The shape of this curve is 
also typical in that it shows a rather rapid increase in 

Au+ after u, reaches the ‘onset’value (the minimum for 
which any drag reduction is noted) and more gradual 
increase of Au+ for large values of u,. 

Incidentally this relationship between Au+ and u, 
may be used to address a problem often encountered 
by engineers working in this field. The fluids we are 
concerned with do degrade with use and there have 
been difficulties in quantifying in a convenient way the 
extent of degradation they experience. Also sometimes 
the relative effectiveness of different additives has to be 

I / 1 J 
0 01 02 

“T ilTl/5eCl 

FIG 6. Characteristic curve for drag reducing Ruld: Shift 
from Newtonian logarithmic velocity profile (Au+)vs friction 
velocity [q = (r,/p)’ ‘1. Solution : 500 ppm guar gum in 

water [7]. Computed frotn data in 52.5 mm tube. 
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I o-44 
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Re 

FE. 7. Prediction of the diameter effect on friction : Friction 
coefficient (C,) vs Reynolds number (Re). Solution : 50 ppm 
polyethylene oxide in water, Pr = 6.16, [22]. Curve (1): 
experimental data for 0.95 cm dia. pipe ; Curve (2): prediction 

for 5 cm pipe. 

evaluated. It may be suggested that the use of the 
Au+-u, relationship might prove convenient for such 
purpose by enabling us to compute typical ratios of 
wall shear stress at onset and comparisons of Au+ for 
given u, 

Following the steps outlined in Section 3.3, we may 
now predict the curve of C, vs Re for a 208 mm pipe 
with the same gum solution [curve (3) Fig. 51. We have 
plotted for comparison the actually measured data for 
a 208 mm pipe as given in ref. [7] (curve 2, Fig. 5). 

35 

3c 

25 

AU+ 

20 

15 

IO 

5 

I I I I I 

I I I I I 
0.1 0.2 0.3 0.4 0.5 

U, (m/seci 

FIG. 8. Characteristic curve of drag reduction: Shift from FIG. 10. Characteristic combined heat transfer and friction 

Newtonian logarithmic velocity profile (Au’) vs friction curve for drag reducing fluid: Dipprey number 
velocity [uT = (r.,,/p)’ ‘*I. Solution: 50 ppm polyethylene 
oxide in water. Pr = 6.16 [22]. Computed from data in 

{[(O.SC,/C,) - l]/(C,/2)} I”} vs friction velocity [Us = 
(s,/p’ ,‘)I. Solution : 50 ppm polyethylene oxide in water, Pr 

0.95 cm tube. = 6.16 [22]. Computed from data in 0.95cm tube. 

Re 

FIG. 9. Prediction of the diameter effect on heat transfer: 
Heat transfer coefficient (C,) vs Reynolds number (Re). 
Solution: 50ppm polyethylene oxide in water Pr = 6.16 
[22]. Curve (1): experimental data for 0.95 cm pipe; Curve 
(2): prediction for 5 cm pipe; Curve (3): Newtonian heat 

transfer law. 

The agreement is rather good, suggesting that the 

proposed method might be based on a reasonable 

concept of the transfer processes. 

5.2. Prediction of the heat transfer coefficient 
We have not been able so far to find suitable data in 

the literature mentioning explicity heat transfer re- 
sults for different diameters and providing all the 
necessary information. We were thus not able to 
actually compare the prediction for heat transfer with 
actual experimental data. 

However, for a better illustration of the method, we 
will use here data from ref. [22]. From measurements 
of a solution of 50 ppm of polyethylene oxide in water 
in a 0.95 cm dia. tube, at a temperature corresponding 
to Pr = 6.16, we will try to predict friction and heat 
transfer for a hypothetical 5 cm dia. tube in the same 
conditions. 

In Fig. 7, we show the measured friction data for a 
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0.95 cm pipe [curve (I)] and the predicted data for a 
5 cm pipe [curve (2)]. The predictions were obtained as 
described in Section S.l.and the Au+ vs ~,curve used in 

the process is shown in Fig. H. 
To obtain the heat transfer coefficient, it is now 

first necessary to plot the parameter 

([(0.5C,,IC,,) - l]/(C,/2)’ “1 vs u, which can be done 
from the data for the 0.95 cm tube. The curve is shown 
in Fig. 10. with the aid of which, C,. and 11: being 
already computed, the appropriate value for C,, can be 
easily obtained. The resulting graph of C, vs Re for the 

5 cm tube is shown in Fig. 9, together with the data for 

the smaller pipe. For reference the heat transfer 
coefficient for a Newtonian fluid with Pr = 6.16 [curve 

(3)], computed from Colburn analogy, is also shown 
Although it is not possible at this time to compare 

these results with actual data, they are likely to give a 
valid estimate for the illustration of the importance of 

the diameter effect on heat transfer, an effect usually far 

from negligible. 
Indeed, it has been shown that the heat transfer is 

usually reduced even more than the friction by the 
drag-reducing additive. Studies have been conducted 
(for example [4]) to estimate the values of heat and 
momentum transport coefficients that would lead to 

the observed heat transfer and drag reduction, and it 

has been shown that the heat transport coefficient can 
be much lower close to the wall than the momentum 
one for certain solutions. 

6. SCMMARY AND CO%C’LUSIONS 

We have reported here a proposed method of 
predicting the diameter effect for drag-reducing 

solutions. 
A simplified mode1 of the velocity profile is assumed 

which includes a shift, Au+, of the logarithmic layer. 

This velocity profile is numerically integrated to 
compute a ‘general C’,-Re-Au” graph. We can then 
obtain for the solution considered a relationship 
between this shift Au+ and the friction velocity u,, using 

data obtained for experiments in a single pipe. 
This relationship is taken as a major characteristic 

describing the behavior of the drag-reducing fluid and 

is assumed to be valid regardless of the diameter of the 
pipe. It is then possible to make predictions for the 
friction in pipes having different diameters. 

Rather analogous assumptions could be made 
in analyzing the heat transfer problem. As a result it 
was shown that the Dipprey number 
[(0.5C,,‘C,,) - l]/(C,;2)’ ’ for a given solution should 
be a function of the friction velocity u, only. 

The use of this last function allows us to make 
predictions for heat transfer in a pipe of any diameter, 
on the basis of a set of heat transfer experiments taken 
in a single pipe with the fluid to be examined. 

Experimental data for friction were available for 

comparison with the values predlcted by the proposed 
method. The agreement was considered quite 
satisfactory. 
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R&um&Un profil de vitesse multi-couches est suppost exister pour les fluides du type 'rkducteurs de 

friction'lors de leur koulement en tube. 

Le protil est characttrisb par une portion logarithmique rehausie d’un increment Auf par rapport g celle 
representant les fluides Newtoniens. Pour une certaine solution, Auf est suppol &re d&ermint par la ‘vitesse 
de cisaillement’ u,. 

Sur ces bases, une m&hode est propo& 6 l’aide de laquelle il est possible de prkdire l’effet d’une variation 
de diamttre sur les coefficients de friction et de transfert de chaleur. 

EINE METHODE ZUR BESTIMMUNG DES “DURCHMESSER-EFFEKT~ BE1 
WARMEOBERGANG UND DRUCKABFALL VON WIDERSTANDSVERMINDERNDEN 

FLUSSIGKEITEN 

Zusammenfassung-Die Existenz eines vielschichtigen Geschwindigkeitsprofils wird fiir die RohrstrGmung 
widerstandsvermindemder Fluide angenommen. Das Profil wird durch einen logarithmisch~ Bereich, der 
urn das Inkrement Au+ gegeniiber dem ftir ein newton’sches Fluid geltendem Profil verschoben ist, 
charakterisiert. Fiir ein gegebenes Fluid wird angenommen, dal3 Au’ durch die Schergeschwindigkeit I(, 
bestimmt wird. Auf dieser Grundlage wird eine Methode vorgeschlagen, mit deren Hilfe man den EinfluD 
von binderungen im Durchmesser auf die Reibungs- und W5rmetibergangskoeBzienten bestimmen kann. 

METOn IIPEACKA3AHMR “3@PEKTA AMAMETPA” HA TEIIJIOIIEPEHOC II 
TPEHME KkIflKOCTEI?, CHM’iKAIOIIJMX COIIPOTHBJIEHWE 

AHHoraitwn-TTpeanonaraeTcr, YTO CH~~a~m~e COn~T~a~eH~e w(HiIKOCTW ffMeH)T MHOrOC~O~H~~ 

npo@inb c~opoc~~ np~ TeSeHkfR a Tpy6e. _JIorapaf@wiecKaa qacrb npo+fna nonyqaeT npspamemie 

Ha BenewHy Au’ n0 CpaBHeHHH, c XapaKrepHbIM J"Ill HbK)TOHOBCKOi? xW,JKOCTH 3HaYeHUeM. flnR 

pacch4aTpwaeMoG WOH,!~KOCTH npennonaraeTcs. wo 6enwwia Au’ onpenel-mew4 cKopocTblo cnewa 

I+. Ha OCHOBaHiiA 3TOr0 npelWO~eH MCTOLI, llO3aOJiaKW_@ npeJlCKa3aTb BnilRHUe AlMeHeHHIl 

nilaMeTpa Ha Tpemie ~Tennone~Hoc. 


