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Abstract—A multilayered velocity profile has been assumed to exist for ‘drag reducing’ fluids flowing in a
pipe. The profile is characterized by a logarithmic portion offset by an increment Au™ from that pertaining to
a Newtonian fluid. For a given fluid Au™ is assumed to be determined by the shear velocity u,. On this basis a
method is proposed by which one may predict the effect of changes in diameter on the friction and heat
transfer coefficients,
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NOMENCLATURE

intersection point of viscous and asymp-
totic layers (Fig. 3);

intersection point of asymptotic and logar-
ithmic layers {Fig. 3);

concentration of solution [ppm];

friction coefficient, 7,/[(pu2)/2];

heat transfer coefficient,

QW/[pCpum(Tw - Tm)] H

specific heat [Jkg ' K ~'];

pipe diameter [m];

thermal conductivity [Wm™ 1K !];
parameter characterizing the nature of the
solution ;

Prandtl number evaluated at T, (uC,)/k;
‘turbulent’ Prandtl number,

v + an/lo + &);

heat flux [Wm™2];

heat flux at wall [Wm~?];

pipe radius [m];

dimensionless radius, (Ru,)/v;

Reynolds number, (u,,D)/v;

temperature [K];

dimensionless temperature, (TpCu.)/q,.;
average temperature in pipe [K];

wall temperature [K];

dimensionless average temperature,
(TrmpCott)/qu

dimensionless wall temperature,
(TupCyt)/gy;

velocity {average of turbulent fluctuations)
[ms™'];

dimensionless velocity, u/u_;

average velocity in pipe [ms™!];
dimensionless average velocity, u,/u.;
friction velocity, {1,./p)*? [ms™'];
coordinate distance normal to wall [m];
dimensionless distance from the wall,
{yud/v;

coordinate of point B (Fig. 3) [m];
dimensionless coordinate of point B,
(vgu)/v;

Ve distance from wall at whichu = u,and T
=Ty [m];

Vs dimensionless y,,,, (¥put,)/v.

Greek symbols

o, thermal diffusivity, k/(pC,) [m*s™'];

. total turbulent heat diffusivity, o + o4
[m*s™'];

Au*,  shift of logarithmic layer, equation (10);

o turbulent heat exchange coefficient
[m?s™'];

> turbulent momentum exchange coefficient
[m*s™'];

U, dynamic viscosity [kgm~"s"'];

v, kinematic viscosity, u/p [m?s™'];

vu,0.  kinematic viscosity of water [m?s™'];

VY, total turbulent momentum diffusivity,
v+ gy [m?s™];

£. density [kgm™*];

T, shear stress [N m™?];

T wall shear stress [N m~?];

7,0,  wall shear stress at onset of drag reduction
[Nm™?].

1. INTRODUCTION

In THE last decade considerable attention has been
paid to the field of non-Newtonian fluids in general
and in particular to a special category of these fluids,
the dilute polymer solutions of the drag-reducing type.
These fluids are of great interest in many applications
as they frequently lead to striking reductionsin friction
and heat transfer as well as in mass transfer.

These characteristics may be of importance in a
number of applications including for example pipe-line
transport, drag reduction for ships and submarines,
firefighting, oil well drilling, and irrigation. Less fre-
quently mentioned but perhaps even more important
are industrial processes treating fluids which naturally
exhibit strong non-Newtonian behavior such as fibers
suspensions, pastes and gums. Such substances may
well have to be processed in the preparation of foods or
the manufacture of certain chemical products.
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The complete and detailed description of the in-
teraction of the molecules or fibers with the flow is, of
course, most complex and even a complete formal
solution may not always be directly suitable for
engineering use, because it may require detailed infor-
mation on the behavior of the molecules, information
which in practice may not really be available.

These considerations have led us to limit our goal to
developing a method by which heat transfer and
friction coefficients may be predicted for pipes of any
size, on the basis of test data obtained in a single pipe.
This approach is to some extent equivalent to the
common practice of presenting friction and heat
transfer coefficients for smooth tubes in terms of Re
and Pr. The data for these presentations are also
obtainable from tests in a single pipe, which, of course,
reduces the required experimental work tremendously.
Nevertheless, the proposed approach will still be
applicable only for a given solution, that is a solution
characterized by such factors as the type of polymer,
concentration, and the state of degradation.

2. SUMMARY OF PREVIOUS WORK

Polymer solutions of the drag-reducing type have
been studied intensively, and are covered by an
extensive literature. For a basic approach of the
problem, we refer the reader to the reviews [1, 2] for
friction and heat transfer [3, 4].

The drag-reduction phenomena can be described
briefly as follows. The Newtonian fluids can be
adequately represented by the well-known universal
laws
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for laminar flow [curve (1), Fig. 1] and
Cy'? =401log,,(ReCL?) — 04 (2)

for turbulent flow [curve (2), Fig. 1].

This is not the case for viscoelastic drag-reducing
fluids however. In fact the typical friction curve for the
latter will be located in a domain bounded by the
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FiG. 1. Typical friction laws: friction coefficient (Cy) vs

Reynolds number (Re). Curve (1): laminar flow; (2): New-

tonian turbulent flow; (3): Virk’s maximum drag reduction
asymptote ; (4): typical drag reducing fluid.
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Newtonian friction law on the upper side and by the
so-called ‘maximum drag-reduction asymptote’ on the
lower side [Virk’s asymptote, curve (3), Fig. t]. Note
thatin Fig. 1 as well as in the subsequent development.
we have used a simplified Reynolds number as defined
for Newtonian fluids. The extension to a Reynolds
number corrected on the basis of a “‘power law’ [5, 6]
should present little difficulty as the method remains
unchanged in that case. Also, the correction will most
probably be small for the dilute solutions of polymers
in a Newtonian solvent generally used for drag-
reduction purposes. The experimental asymptote has
been found to be remarkably insensitive to polymer
nature, concentration and solvent, constituting a seem-
ingly ‘absolute’ limitation to the decrease in friction
made possible by the presence of a drag-reducing
agent. Virk’s equation [2] for the asymptote is

Ci'2 =190 log,, (Re Cl %) — 324, (3)

The actual position of the friction curve between those
limits is unknown a priori and will depend on all the
factors previously mentioned. An example of such a
curve is shown in Fig. 1 and designated by curve (4).

In particular, it has been often noted that there is a
rather strong influence of the diameter of the pipe on
the friction law, all other factors being constant, as
clearly illustrated in Fig. 2 based on ref. [ 7] whose data
we will subsequently use for comparison with the
values predicted from our approach.

The problem of the diameter effect is of particular
importance as it would be most valuable to predict the
friction (and heat transfer) in large scale pipes (which
may be required in actual industrial applications) from
data obtained with relatively small sizes in the labo-
ratory. Accompanying the reduction in friction, a
corresponding decrease in heat transfer takes place.
The two phenomena cannot however be directly
related by a simple law. The C}, vs Re curves will have
for upper bound the Newtonian relationship described
by the traditional Colburn analogy

CyPr?? =2 )

T T T | S S B e

Cr

(2)

: T »f
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FiG. 2. The effect of diameter on friction for drag reducing
fluids: friction coefficient (Cr) vs Reynolds number (Re).
Solution : 500 ppm guar gum in water [7]. Curve (1): 4.1 mm
dia. pipe; (2): 10mm; (3): 52.5mm; (4): 104.7mm: (5):
208 mm.
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and for lower bound the minimum heat transfer
asymptote, an expression for which has been proposed
as [4]

CyPr?? = 0.03 Re[ %45 (5)

where Re, is a Reynolds number based on the apparent
viscosity at the wall.

It is significant that the data and studies of heat
transfer are much scarcer than the corresponding
friction data for this kind of fluids. From those
available, it is important to note, as has been suggested
for fiber suspensions as well as for polymer solutions
[4] that the often assumed Reynolds analogy (ey = €y)
is most probably not applicable in general for any
viscoelastic drag-reducing solutions. Furthermore,
when taking or evaluating the experimental data, one
has to take into account radical departures from
Newtonian behaviour such as greatly lengthened
entrance regions [4] and the anomalous readings by
classical instruments (e.g. hot wire, pitot tubes). The
study of heat transfer data, however, is often doubly
rewarding as it may not only be helpful in providing
information for design purposes, but it may also lead
to a better understanding of the turbulent transport
mechanism for heat and momentum transfer.

Various models have been proposed for the repre-
sentation of the velocity profile in terms of the non-
dimensional quantities u* and y* as used in the
classical turbulent universal profile. These models are
related to expressions that have been designed in the
case of Newtonian fluids to represent the smooth
transition between the laminar sublayer

ut =y", (6)
the logarithmic profile [9]
ut =25mny* +55 M

and the outer wake defect law [10]. A good example is

(1]

yt=ut e 3K ek — 1 — Ku”

+132 +33
| _(Ku)_(Ku)J &)
with K = 0.4. 2 6

3. THE DIAMETER EFFECT ON THE FRICTION
COEFFICIENT

3.1. The velocity profile
In the present proposed approach, we will, for the
sake of simplicity, use Virk’s 3-layers model [2] which
consists of the classical viscous sublayer [equation (6),
layer 1 in Fig. 3], an ‘ultimate’ (or ‘asymptotic’) profile
u” =117Iny" - 170 )
(layer 2, Fig. 3) and a logarithmic layer
ut =25Iny* +55+ Au” (10)

(layer 3, Fig. 3). The logarithmic portion will be
parallel to the Newtonian one (layer 4, Fig. 3) but
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Fic. 3. Virk’s velocity profile model: Dimensionless law of

the wall velocity (u* = u/u,) vs dimensionless distance from

the wall (3* = (yu,)/v). Curve (1): viscous sublayer; (2):

Virk’s elastic sublayer (3): logarithmic layer; (4): Newtonian
logarithmic layer.

displaced by an amount Au™ which is assumed to be a
function of the nature of the polymer solution, its
concentration, state of degradation, flow conditions
etc. Some authors have proposed that the logarithmic
portions of the velocity profiles are not exactly parallel
to each other and certain corrections have been
suggested [12]. These are generally small, however,
and we will neglect them in this first approach. We will
also neglect the outer wake layer as is often done for
pipe flow without adverse pressure gradient, and
simply suppose that the logarithmic layer extends to
the center of the pipe. We will assume that those
conditions exist for the flow of our solutions and re-
examine this point as we continue with the
development.

The limits of the different layers are then: the triple
intersection between the viscous laminar sublayer, the
asymptotic profile and the Newtonian logarithmic
profile (point A in Fig. 3), and the intersection of the
ultimate profile with that of the central core (point B).
The triple intersection (point A)is approximated by y*
= 12, and point B is a function of the displacement
Au™ of the logarithmic portion of the velocity profile
with respect to the Newtonian one. This intersection is
determined by

Au’ 225
Wi =exp<L+—~). (1)

9.2

We will hereafter consider the increment Au® as a
typical number characterizing the degree, or in a sense
the effectiveness, of the drag reduction. Indeed, if Au™
= 0, the profile collapses to the classical Newtonian
one and if Au* is such that y; > R*, (R*, non-
dimensionalized radius), the profile will consist only of
the laminar sublayer and the asymptotic interactive
layer. In that case, one would expect to obtain the case
defined by Virk’s asymptote.

The parameters governing Au® may be derived by
following general dimensional analysis and the con-
cepts of the law of the wall. The quantity Au* should
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then depend on the type and condition of the polymer
described by P and the concentration C. Appropriate
forms of this parameter P could be {(u L)/v or u?T/v
where L is a characteristic length of the polymerand T
a characteristic time. Many studies have been dedi-
cated to finding expressions for L or T in terms of
classical rheological parameters for the polymer so-
lution such as molecular weight, number of chain links
in the macromolecules, intrinsic viscosity, radius of
gyration or relaxation times. For the purpose of the
present study as outlined in the introduction, however,
L or T may be regarded as fixed quantities for any
particular solution. As a consequence Au’ becomes a
function of u, only.

Making use of the velocity profiles as illustrated in
Fig. 3, it is now possible to integrate numerically these
profiles to find a relationship between Cy., Re and Au™.

Comparing these calculated values of Cy and Re to
the corresponding measured values, the appropriate
Au" can be determined. Since for a given pipe C; and
Re also fix the value of u, a relation between u_ and
Au™ is established. Through repeated tests in the same
pipe, the desired range of Au™ vs u_may be established
for each solution. Thus a curve of Au* vs u, may be
prepared which may be regarded as a basic character-
istic of the particular solution.

3.2. Numerical integration of the velocity profiles
The steps outlined in Section 3.1 will now be
described in some more detail.
Integrating the velocity from the wall (y = 0) to the
centerline (v = D/2), we define an average velocity

u, = %5 ;:2 2n (g - }')Md}; (12)
and, using the usual relations
Ut = (2/Cp)t 2, (13)
u, = (v/D)Re (Cp/2)! 2 {14)
with
Re = (pu,D)/u (15)
we find
g8 v [R -2
CF—2[55;§ Jo (R* — ¥t dy*} (16)
and
Re= 22 [R' (R* =y yutdy*,  (17)
Du, j,

equations which give us Cy and Re in terms of u, and
Au*. The value of Au™ appears through the logarith-
mic velocity profile expression and in the determi-
nation of the intersection of the asymptotic and
logarithmic layers.

Carrying out the computations as indicated by
equations (16) and (17) we obtain a series of curves for
Cg vs Re, each curve corresponding to a different value
of Au™. The results are shown in Fig. 4. These curves
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represent the relationship between Cp, Re and Au’
which was mentioned in Section 3.1, and which for
convenience we might call the "general Cp-Re-Au’’
curve.

Any point on these curves is representing, for that
particular ‘effectiveness of drag reduction’ (i.e. given
Au™), a certain wall shear stress for a known diameter
and viscosity, as

T, = p[(v/DyRe(Cp/2} )7 (18)

We have represented only the turbulent flow region
since, for the type of fluids under consideration, drag
reduction is known to be relevant only to that case.

[t is interesting to note the very smooth tangential
blending of the constant Au™ curves with the max-
imum drag reduction asymptote. This corresponds to
the transition from the asymptotic to the logarithmic
layer of the velocity profile.

[t is also apparent that, unless u, and Au™ are such
that R* < yg (ie. the flow is still in the region of the
drag reduction asymptote), the logarithmic part of the
profile very soon exerts a major influence on the Re-C
curves, as the parallelism to the Newtonian law seems
to imply.

It is important to recall that for different diameters,
the same value of u, will occur at different positions on
the curve for a constant Au™, thus determining dif-
ferent pairs of the values C,—Re. Indeed, we know that
for the same Re, a given solution in different diameters
of pipe will show different values of (' (the so-called
‘diameter effect’).

As mentioned before, it is believed that for a given
solution there is a unique relationship between u_and
Au™. The value of u, will then be sufficient to describe
the velocity in the region close to the wall, which is the
one probably most responsible for the phenomena
considered here. A similar proposition has been well
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FiG.4. General Cy~Re-Au”* graph (turbulent flow): Friction
coefficient {Cy) vs Reynolds number (Re) for various values of
Au”, {shift from Newtonian logarithmic velocity profile).
Curve (1): Newtonian turbulent friction law; Curve (2):
Virk’s asymptote for maximum drag reduction.



Predicting the ‘diameter effect’ of drag-reducing fluids

demonstrated by the success of the classical New-
tonian universal velocity profile (‘law of the wall’).
Thus, if the assumption that the wall region effects are
predominant is correct, u, should be adequate to
describe the whole flow and Au* should be only
weakly dependent on the diameter. Indeed, this has
been indicated experimentally.

It is now possible therefore, after experimental
measurements of the Cg vs Re law in a single pipe for a
particular solution, to plot these results on our general
Cr—Re-Au™ graph and to associate a value of Au™ with
every combination of Cr—Re, that is for every u,
[equation (14)]. That one-to-one relationship between
Au* and u, may in fact be regarded as a principal
characteristic of a given polymer solution, as pointed
out earlier.

3.3. Prediction of the friction coefficients for different
diameters

The next step now is to apply the previous com-
putation so as to be able to predict for a given solution
the drag reduction in a pipe of any diameter from data
taken in a single pipe (usually a size conveniently
handled in the laboratory). It is important to repeat at
this point that we are assuming that the solution to be
considered in a pipe of arbitrary size will in all respects
be the same as that in the test pipe.

Measurement in a test pipe of a given diameter will,
by the procedure explained in the previous section, give
us the relation between Au™ and u, for that particular
solution.

The basic assumption we will use is that, as has been
suggested before, this relationship Au*-u, is fairly
independent of the diameter of the pipe for a given
solution. Experiments have shown that this pro-
position is acceptable [ 13]. This assumption, as well as
other types of correlations [14-16] have been used,
and studies have been conducted [17-20] in an
attempt to isolate and understand the nature of the
diameter effect.

Using the ‘general Cp—Re-Au™’ graph (Fig. 4)
together with the appropriate relationship between u,
and Au® which is applicable to the solution in
question, it is now possible to predict the friction
coefficient for the flow in a pipe of any desired
diameter.

The computations can be summarized as follows:

Select an arbitrary C, corresponding to the Re
desired for the pipe under consideration.
Compute the associated u, [equation (14)].
Evaluate Au™ from the experimental graph Au™*—u..
For the same Re, locate the pair of values Cp—Re
specified by the value of Au* on the ‘general
C—Re-Au™’ graph (Fig. 4).

Find the corresponding value of Cy. This is a new
estimate for Cg.

Compute a new u, etc, until the values of Cp
converge to the one which then becomes our
prediction for the new pipe at the specified Re.
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The same procedure for different Re will give us a
complete relationship between Cp and Re for that
given pipe. Note that the process usually converges
rapidly and 2 or 3 iterations are generally enough for
each point.

4. THE ‘DIAMETER EFFECT’ ON THE HEAT TRANSFER
COEFFICIENT
4.1. Basic relationships
The usual turbulent relations for shear flow may be
expressed as

T (v + ;:M)d—u (19)

p dy
and
q/(pCy) = — [pk?p + m}%. (20
Now, with
T" = T/[q./(pCyu.)] @n
and
v, =V 4+ &y (22)
Pr, = ;—i—i: (23)
o= L, (24)
pCy

if we assume fully developed flow, no viscous dissi-
pation, no axial conduction and similar variations of
7/1,, and ¢/q,,, we find

+
_— = — Pr,gu—Jr. (235)
dy

We can then integrate from y* = 0 to y* = y
where y is the position of the average velocity u,;, and
is also assumed to be corresponding to the average
temperature T, (this should not introduce a large
error for smooth tubes).

Let
qw
Chy=———""-——. 26
T pCun(T — T,) 20)
Then [21]
Th —Ts = —(Ce/2)" 2(1/Cy). 27
Also, with
Yo [du™
u =j [ u+]dy* (28)
0 dy i

we finally find that the combination of terms which is
sometimes called the Dipprey number is given by

[(O.SCF/CH) _ 1](CF/2)_1 2 _ '[‘ (Pr,— 1) <du+ )dy+
0 dy

(29)
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Note that we did not need to make any assumption
regarding the value of Pr_ and that the Reynolds
analogy, in particular, did not have to be introduced.

Supposing again, as mentioned earlier in Section 3.1,
that the polymer solution can be described by the
parameters C and P, for a given solution the pheno-
mena will be characterized by u, only. We can write
then

du”

— =fillC. Py = [ y 7).

30
i (30)

Assuming also as before a unique relationship between
Au® and u, for each solution, it follows that

Y =FlAu", u) = f% (u).

For heat transfer, the Prandtl number of the solution
will also have to be included as a parameter. The way in
which P has been defined, the possibility that it
depends on temperature must be considered too. A
given temperature, however, will fix the value of Prand
the dependence on temperature of P, so that for a
particular solution and temperature, we have

Pro=f3(Pr.C, P.y7) = [y (un y").

(31)

(32)

Finally, after integration with respect to y * in equation
(29), we find

[(0.5CH/Cy) — I(CE/D) ™' 2 = Flu). (33)

We can thus with the experimental data for C—Re
and Cy-Re in a single pipe, compute the previous
function [equation (33)] which is a characterization of
the combined heat transfer and friction reduction
induced by that particular solution.

The procedure of predicting heat transfer coef-
ficients for pipes of different diameters may now be
summarized.

|
() 525 mm (MEASURED) 1
) 1
(2) 208 mm (MEASURED) {
(3) 208 mm (PREDICTED) i

o) & T'_L—_ij_A_L.H_Js___;—_;L_;._A_J 6
10 10 10
Re
Fi1G. 5. Prediction of the diameter effect on friction : Friction
coefficient (C.) vs Reynolds number (Re). Solution : 500 ppm
guar gum in water [7]. Curve (1): experimental data for
52.5 mm pipe ; Curve (2) : experimental data for 208 mm pipe ;
Curve (3): prediction for 208 mm pipe on basis of 52.5 mm
data.
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After obtaining friction and heat transfer data
experimentally in a single test pipe, we can predict the
Cr—Relaw for another diameter by first computing the
Au” -u, function as explained in Section 3.

We next also compute

[(Clw’rlzc‘}{) - 1],’/((“-""2)1 = Flu) {34)

from those data, where F(u,}is a function of u_only and
is not directly dependent on the diameter. For a
desired Re and the predicted Cy., we can compute u,
[equation (14)]. With these values of u_and C,, Cy, is
obtained from the previously found relation [equation
(34)], which will usually be given in graphical or
numerical form.

5. EXAMPLES

5.1. Prediction of the friction coefficient

Let us try to predict friction coefficients for a pipe of
208 mm dia from the experimental data for a 52.5 mm
one, for a guar gum solution of 500 ppm in water. The
experimental data are taken from ref. [ 7]. In Fig. 5 we
have plotted the experimental data for the 52.5mm
pipe on the general ‘Cg—Re—-Au*’ graph, the curve
is designated (1). From the intersection of the experi-
mental curve with the constant Au* curves, we can
compute the relation Au™ vs u_ (Fig. 6). In so doing we
have used the expression

V=l + 4731074 CH1T)

(where C, is the concentration in ppm) for the
viscosity.

This curve of Au* vs u, is considered to be a unique
characteristic of this solution. The shape of this curve is
also typical in that it shows a rather rapid increase in
Au™ after u, reaches the ‘onset’ value (the minimum for
which any drag reduction is noted) and more gradual
increase of Au* for large values of u_.

Incidentally this relationship between Au™ and u,
may be used to address a problem often encountered
by engineers working in this field. The fluids we are
concerned with do degrade with use and there have
been difficulties in quantifying in a convenient way the
extent of degradation they experience. Also sometimes
the relative effectiveness of different additives has to be

L S B A S St S S
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o 0.1 0.

Uy (m/sec)

Fi. 6. Characteristic curve for drag reducing fluid: Shift

from Newtonian logarithmic velocity profile (Au™) vs friction

velocity [u, = (z,/p)' ] Solution: 500 ppm guar gum in
water [7]. Computed from data in 52.5 mm tube.
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F1G. 7. Prediction of the diameter effect on friction : Friction

coefficient (Cg) vs Reynolds number (Re). Solution: 50 ppm

polyethylene oxide in water, Pr = 6.16, [22]. Curve (1):

experimental data for 0.95 cm dia. pipe ; Curve (2): prediction
for 5 cm pipe.

evaluated. It may be suggested that the use of the
Au* -u_ relationship might prove convenient for such
purpose by enabling us to compute typical ratios of
wall shear stress at onset and comparisons of Au™ for
given u..

Following the steps outlined in Section 3.3, we may
now predict the curve of Cy vs Re for a 208 mm pipe
with the same gum solution [curve (3), Fig. 5]. We have
plotted for comparison the actually measured data for
a 208 mm pipe as given in ref. [7] (curve 2, Fig. 5).

35 T T =

au

ZOT —

L ) J | |
0 0.1 0.2 0.3 0.4 0.5

Urs {m/sec)

FiG. 8. Characteristic curve of drag reduction: Shift from

Newtonian logarithmic velocity profile (Au‘) vs friction

velocity [u, = (1,/p)!'"*]. Solution: 50 ppm polyethylene

oxide in water. Pr = 6.16 [22]. Computed from data in
0.95cm tube.
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FiG. 9. Prediction of the diameter effect on heat transfer:

Heat transfer coefficient (Cy) vs Reynolds number (Re).

Solution: 50 ppm polyethylene oxide in water Pr = 6.16

[22]. Curve (1): experimental data for 0.95cm pipe; Curve

(2): prediction for 5cm pipe; Curve (3): Newtonian heat
transfer law.

The agreement is rather good, suggesting that the
proposed method might be based on a reasonable
concept of the transfer processes.

5.2. Prediction of the heat transfer coefficient

We have not been able so far to find suitable data in
the literature mentioning explicity heat transfer re-
sults for different diameters and providing all the
necessary information. We were thus not able to
actually compare the prediction for heat transfer with
actual experimental data.

However, for a better illustration of the method, we
will use here data from ref. [22]. From measurements
of a solution of 50 ppm of polyethylene oxide in water
in a 0.95 cm dia. tube, at a temperature corresponding
to Pr = 6.16, we will try to predict friction and heat
transfer for a hypothetical 5cm dia. tube in the same
conditions.

In Fig. 7, we show the measured friction data for a

] T T
] o -
c ‘ 1401 3
2Cy
/Tt
2 20 B
100} -
80 S 1 1 1
o1 0.2 03 0.4 0.5

Uz (m/sec)

Fic. 10. Characteristic combined heat transfer and friction

curve for drag reducing fluid: Dipprey number

{[(0.5C¢/Cy) — 1]/(Cg/2)} *7} vs friction velocity [u, =

(tw/p"?)]. Solution: 50 ppm polyethylene oxide in water, Pr
= 6.16 [22]. Computed from data in 0.95cm tube.
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0.95 cm pipe [curve (1)] and the predicted data for a
5 cm pipe [curve (2)]. The predictions were obtained as
described in Section 5.1, and the Au™ vs 1 _curve used in
the process is shown in Fig. &.

To obtain the heat transfer coefficient, it is now
first necessary to  plot the parameter
{[O5CE/Cy) — 1JACE/2)' 2} vs u, which can be done
from the data for the 0.95 cm tube. The curve is shown
in Fig. 10, with the aid of which, C. and u, being
already computed, the appropriate value for C can be
easily obtained. The resulting graph of Cy, vs Re for the
5cm tube is shown in Fig. 9, together with the data for
the smaller pipe. For reference the heat transfer
coefficient for a Newtonian fluid with Pr = 6.16 [curve
(3)], computed from Colburn analogy, is also shown

Although it is not possible at this time to compare
these results with actual data, they are likely to give a
valid estimate for the illustration of the importance of
the diameter effect on heat transfer, an effect usually far
from negligible.

Indeed, it has been shown that the heat transfer is
usually reduced even more than the friction by the
drag-reducing additive. Studies have been conducted
(for example [4]) to estimate the values of heat and
momentum transport coefficients that would lead to
the observed heat transfer and drag reduction, and it
has been shown that the heat transport coefficient can
be much lower close to the wall than the momentum
one for certain solutions.

6. SUMMARY AND CONCLUSIONS

We have reported here a proposed method of
predicting the diameter effect for drag-reducing
solutions.

A simplified model of the velocity profile is assumed
which includes a shift, Au*, of the logarithmic layer.
This velocity profile is numerically integrated to
compute a ‘general C—Re-Au™ graph. We can then
obtain for the solution considered a relationship
between this shift Au* and the friction velocity u_, using
data obtained for experiments in a single pipe.

This relationship is taken as a major characteristic
describing the behavior of the drag-reducing fluid and
is assumed to be valid regardless of the diameter of the
pipe. It is then possible to make predictions for the
friction in pipes having different diameters.

Rather analogous assumptions could be made
in analyzing the heat transfer problem. As a result it
was  shown  that the Dipprey number
[(0.5C/Cyy) — 1]/(Cg/2)" ? for a given solution should
be a function of the friction velocity u, only.

The use of this last function allows us to make
predictions for heat transfer in a pipe of any diameter,
on the basis of a set of heat transfer experiments taken
in a single pipe with the fluid to be examined.

Experimental data for friction were available for

E. F. MarTHYs and R. H. SABELRSKY

comparison with the values predicted by the proposed
method. The agreement was considered quite
satisfactory.
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Predicting the ‘diameter effect’ of drag-reducing fluids

Résumé—Un profil de vitesse multi-couches est supposé exister pour les fluides du type ‘réducteurs de
friction’ lors de leur écoulement en tube.

Le profil est charactérisé par une portion logarithmique rehaussée d'un incrément Au™ par rapport a celle
représentant les fluides Newtoniens. Pour une certaine solution, Au™* est supposé étre déterminé par la ‘vitesse
de cisaillement’ u,.

Sur ces bases, une méthode est proposée d I'aide de laquelle il est possible de prédire leffet d’une variation

de diameétre sur les coefficients de friction et de transfert de chaleur.

. EINE METHODE ZUR BESTIMMUNG DES “DURCHMESSER-EFFEKTS” BEI
WARMEUBERGANG UND DRUCKABFALL VON WIDERSTANDSVERMINDERNDEN
FLUSSIGKEITEN

Zusammenfassung—Die Existenz eines vielschichtigen Geschwindigkeitsprofils wird fiir die Rohrstrémung
widerstandsvermindernder Fluide angenommen. Das Profil wird durch einen logarithmischen Bereich, der
um das Inkrement Au* gegeniiber dem fiir ein newton’sches Fluid geltendem Profil verschoben ist,
charakterisiert. Fiir ein gegebenes Fluid wird angenommen, daB Au* durch die Schergeschwindigkeit u,
bestimmt wird. Auf dieser Grundlage wird eine Methode vorgeschlagen, mit deren Hilfe man den EinfluBl
von Anderungen im Durchmesser auf die Reibungs- und Wirmetibergangskoeffizienten bestimmen kann.

METO/[ NMPEACKA3AHUA “DOOGEKTA JUAMETPA™ HA TEIUIONEPEHOC U
TPEHHUE XWAKOCTEW, CHUXAIOWNX COIMPOTUBJIEHHUE

Annorammsi—I1peanonaraercd, YTO CHMXKAIOMHE COMPOTHBICHHUE XHIKOCTH HMEIOT MHOIOCHONHLIN

npodHiIb CKOpocTH Npy Tevennu B TpySe. STorapudmudeckas 4acTs npodHis nonydacT npHpauieHHe

HAa BEJIHYMHY Au’ 1O CPaBHEHHIO ¢ XapaKTEPHBIM [UIA HBIOTOHOBCKOH XHIKOCTH 3HaucHuem. [na

PaccMaTpUBaeMOH KHIKOCTH MPEANOJAraeTCs, YTO BEIWUMHA Au’ ONPEIENISETCs CKOPOCTHIO CHBMIa

u,. Ha OCHOBAHMM 3TOrO NPE/UTOKEH METOA, II03BOAMIOWIMA HPEACKA3aTh BAMAHHE HIMCHEHUA
HaMETpa Ha TPEHHE H TEIIONEPEHOC.
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